高二化学复习方法:化学选择题如何提高得分率

2020-06-25 09:18:00来源:网络

  1、商余法

  这种方法主要是应用于解答有机物(尤其是烃类)知道分子量后求出其分子式的一类题目。对于烃类,由于烷烃通式为CnH2n+2,分子量为14n+2,对应的烷烃基通式为CnH2n+1,分子量为14n+1,烯烃及环烷烃通式为CnH2n,分子量为14n,对应的烃基通式为CnH2n-1,分子量为14n-1,炔烃及二烯烃通式为CnH2n-2,分子量为14n-2,对应的烃基通式为CnH2n-3,分子量为14n-3,所以可以将已知有机物的分子量减去含氧官能团的式量后,差值除以14(烃类直接除14),则最大的商为含碳的原子数(即n值),余数代入上述分子量通式,符合的就是其所属的类别。

  例1

  某直链一元醇14克能与金属钠完全反应,生成0.2克氢气,则此醇的同分异构体数目为()

  A.6个B.7个C.8个D.9个

  【解析】:

  由于一元醇只含一个-OH,每mol醇只能转换出1/2molH2,由生成0.2克H2推断出14克醇应有0.2mol,所以其摩尔质量为72克/摩,分子量为72,扣除羟基式量17后,剩余55,除以14,最大商为3,余为13,不合理,应取商为4,余为-1,代入分子量通式,应为4个碳的烯烃基或环烷基,结合"直链",从而推断其同分异构体数目为6个。

  2、平均值法

  这种方法最适合定性地求解混合物的组成,即只求出混合物的可能成分,不用考虑各组分的含量。根据混合物中各个物理量(例如密度,体积,摩尔质量,物质的量浓度,质量分数等)的定义式或结合题目所给条件,可以求出混合物某个物理量的平均值,而这个平均值必须介于组成混合物的各成分的同一物理量数值之间,换言之,混合物的两个成分中的这个物理量肯定一个比平均值大,一个比平均值小,才能符合要求,从而可判断出混合物的可能组成。

  例2

  将两种金属单质混合物13g,加到足量稀硫酸中,共放出标准状况下气体11.2L,这两种金属可能是()

  A.Zn和Fe

  B.Al和Zn

  C.Al和Mg

  D.Mg和Cu

  【解析】:

  将混合物当作一种金属来看,因为是足量稀硫酸,13克金属全部反应生成的11.2L(0.5摩尔)气体全部是氢气,也就是说,这种金属每放出1摩尔氢气需26克,如果全部是+2价的金属,其平均原子量为26,则组成混合物的+2价金属,其原子量一个大于26,一个小于26,代入选项,在置换出氢气的反应中,显+2价的有Zn,原子量为65,Fe原子量为56,Mg原子量为24,但对于Al,由于在反应中显+3价,要置换出1mol氢气,只要18克Al便够,可看作+2价时其原子量为27/(3/2)=18,同样假如有+1价的Na参与反应时,将它看作+2价时其原子量为23×2=46,对于Cu,因为它不能置换出H2,所以可看作原子量为无穷大,从而得到A中两种金属原子量均大于26,C中两种金属原子量均小于26,所以A,C都不符合要求,B中Al的原子量比26小,Zn比26大,D中Mg原子量比26小,Cu原子量比26大,故BD为应选答案。

  3、极限法

  极限法与平均值法刚好相反,这种方法也适合定性或定量地求解混合物的组成。根据混合物中各个物理量(例如密度,体积,摩尔质量,物质的量浓度,质量分数等)的定义式或结合题目所给条件,将混合物看作是只含其中一种组分A,即其质量分数或气体体积分数为100%(极大)时,另一组分B对应的质量分数或气体体积分数就为0%(极小),可以求出此组分A的某个物理量的值N1,用相同的方法可求出混合物只含B不含A时的同一物理量的值N2,而混合物的这个物理量N平是平均值,必须介于组成混合物的各成分A,B的同一物理量数值之间,即N1

  例3

  4个同学同时分析一个由KCl和KBr组成的混合物,他们各取2.00克样品配成水溶液,加入足够HNO3后再加入适量AgNO3溶液,待沉淀完全后过滤得到干燥的卤化银沉淀的质量如下列四个选项所示,其中数据合理的是()

  A.3.06g

  B.3.36g

  C.3.66g

  D.3.96

  【解析】:

  本题如按通常解法,混合物中含KCl和KBr,可以有无限多种组合形式,则求出的数据也有多种可能性,要验证数据是否合理,必须将四个选项代入,看是否有解,也就相当于做四道计算题,耗时耗力。使用极限法,设2.00g全部为KCl,根据KCl-AgCl,每74.5gKCl可生成143.5gAgCl,则可得沉淀为2.00/74.5×143.5=3.852g,为最大值;同样可求得当混合物全部为KBr时,每119gKBr可得沉淀188g,所以应得沉淀为2.00/119×188=3.160g,为最小值。因此答案应介于最大值和最小值之间,答案选BC。

  4、估算法

  化学题尤其是选择题中所涉及的计算,所要考查的是化学知识,而不是运算技能,所以当中的计算的量应当是较小的,通常都不需计出确切值,可结合题目中的条件对运算结果的数值进行估计,符合要求的便可选取。

  例4

  已知某盐在不同温度下的溶解度如下表,若把质量分数为22%的该盐溶液由500C逐渐冷却,则开始析出晶体的温度范围是()

  1463363488550978.png

  A.0-100℃

  B.10-200℃

  C.20-300℃

  D.30-400℃

  【解析】:

  本题考查的是溶液结晶与溶质溶解度及溶液饱和度的关系。溶液析出晶体,意味着溶液的浓度超出了当前温度下其饱和溶液的浓度,根据溶解度的定义,[溶解度/(溶解度+100克水)]×100%=饱和溶液的质量分数,如果将各个温度下的溶解度数值代入,比较其饱和溶液质量分数与22%的大小,可得出结果,但运算量太大,不符合选择题的特点。从表上可知,该盐溶解度随温度上升而增大,可以反过来将22%的溶液当成某温度时的饱和溶液,只要温度低于该温度,就会析出晶体。代入[溶解度/(溶解度+100克水)]×100%=22%,可得:溶解度×78=100×22,即溶解度=2200/78,除法运算麻烦,运用估算,应介于25与30之间,此溶解度只能在30-400C中,故选D。

  5、差量法

  对于在反应过程中有涉及物质的量,浓度,微粒个数,体积,质量等差量变化的一个具体的反应,运用差量变化的数值有助于快捷准确地建立定量关系,从而排除干扰,迅速解题,甚至于一些因条件不足而无法解决的题目也迎刃而解。

  例5

  在1升浓度为C摩/升的弱酸HA溶液中,HA、H+和A-的物质的量之和为nC摩,则HA的电离度是()

  A.n×100%

  B.(n/2)×100%

  C.(n-1)×100%

  D.n%


TO:准高一、高二、高三学生

微信扫码入群免费领取学习资料

微信扫码加入【高中福利群】领取

2020高考真题及解析

2021年高考预测及分析

更多资料
更多>>
更多内容

微信扫码加入【高中群】免费领取

2020高考真题&解析

2021年高考预测&分析

更多>>
更多课程>>
更多>>
更多资料